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Abstract: This study focuses on formulating and optimizing a conductive polymer composite (CPC)
material tailored for electromechanical applications. Linear Low-Density Polyethylene (LLDPE)
polymer and micro carbon particles derived from rice husk were compounded using a hot compac-
tion process and melt blended through a single-screw extrusion machine. A mix of 50% loading of
microcarbon particles was used in this research. It was determined that the experiment was success-
fully conducted, resulting in a stabilized density of approximately 1 g/cm?. The research demon-
strates how the prototype Extruder Head effectively stabilizes the density of composites. Electrical
conductivity demonstrated a notable increase in conductivity toward higher density. These findings
underscore the successful development of a CPC material with improved electrical conductivity,
making it a highly suitable tool for high carbon-loading composite material.

Keywords: Carbon-LLDPE Composite; Rice Husk Carbon; Electrical Conductivity; Conductive Car-
bon; Extruder Head

1. Introduction

This article discusses the engineering development of filament materials for 3D Print-
ing/3DP applications using CPC materials. Carbon polymer composites are also called
CPC due to the conductive properties perceived in the composites that are fundamentally
influenced by the van der Waals forces between the fillers. These forces maintain a com-
plex network of fillers within the composite during filament manufacturing [1]. Polymer
materials can be engineered into composite materials by adding reinforcing agents/fillers
to enhance their mechanical, thermal, electrical/magnetic, and chemical properties. Car-
bon materials have been widely used as filler materials in 3DP for various applications,
from medical to energy storage [2]. The melt blending process is commonly used in com-
pounding in filament manufacturing [3]. In this process, shear energy is harnessed by the
rotation of the extrusion machine's screw, which is particularly effective when employing
twin-screw extruders [3]. However, single-screw extrusion machines [4] can produce
3DP filaments using the master batch dilution method [3]. These machines can also be
utilized for direct low-carbon concentration composites [5]. It is important to note that
manufacturing filaments with high filler concentrations cannot be achieved using single-
screw extrusion machines [5]. Generally, CPC production aims to achieve a low percola-

tion threshold [3]. However, this article takes a contrary approach [2] —the melt blending
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method benefits nano-sized fillers, achieving percolation thresholds at low concentra-
tions. However, high filler concentrations do not significantly enhance electrical conduc-
tivity values in advancements [6]. In the case of using micro-sized carbon filler, higher
concentrations are needed to reach the percolation threshold, thus requiring increased
amounts of carbon [7]. Auxiliary tools supporting the extrusion process include the ex-
truder head [8] equipped with spider legs [9]. It is suspected that these auxiliary tools can
transform the turbulent fluid flow of composites with high carbon concentrations into the
laminar fluid flow, affecting the rheological properties of the composite within the ex-
truder head chamber [10]. The article explores experiments on producing high-carbon
content polymer composites with loading up to 50%, a fraction not mentioned in the ref-
erenced journal article [11]. Experiments used micro-sized carbon from organic rice husks
to investigate how stabilizing density affects electrical conductivity in the extruder head

chamber.

2. Materials and Experiment Methods

The fabricated carbon filler is powdered with a particle size of micro mesh #200 and
a density of 1.4 g/cm? [2]. The virgin polymer used #40 mesh and a 0.91-0.98 g/cm?® density
of ETILINAS LL3840UA [7]. The design of the tools [9] was created using the Solid-
work/SW simulator [2], and the design of the spider leg can be seen in Figure 3. The melt
blending process was carried out using a single-screw extrusion machine with an L/D
Screw ratio of 19 [12]. The spider leg was fabricated using conventional machinery, and
the assembly of the tools [2] can be observed in Figure 2.

The 3D printing filament was manufactured with a composition of polymer to micro
carbon at a loading ratio of 50:50. The machine was heated with the motor running until
each zone reached its temperature: 200°C for Zone 1, 150°C for Zones 2 and 3, and 110°C
for the Extruder Head. The Extruder head was divided into four zones for density char-
acterization based on geometric changes illustrated in Figure 1.

Comparison experiment: composites fabricated via hot compaction molding at 130°C
with a holding phase at 115°C, applying 100 bar compaction pressure on it at the same
composition. Density testing was conducted according to ASTM D792 standards [13, 14,
15]. Electrical conductivity was tested using the two-contact probe/TCP method [16].

.
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Figure 1. Affected Zone in Extruder Head Chamber Figure 2. Designated Spider L
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Microstructure observations were carried out using Scanning Electron Micros-
copy/SEM with a Hitachi SU3500 machine at the National Research and Innovation
Agency/BRIN laboratory, equipped with elemental analysis through SEM-EDX (Energy
Dispersive X-ray) [17].

3. Results and Discussion

3. 1 Composite Density in zones

The experiment used a primary extrusion machine to extrude a composite material
containing a 50% loading of microcarbon from rice husks mixed with LLDPE. Experi-
ments conducted with an extruder head demonstrated a stable composite density within
the extruder head zones [2]. The composite material was extruded from the nozzle and
then molded through a hot compaction process, yielding samples with a density of ap-

proximately 1 g/cmd.

Figure 3. Extruder Head Assembly
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Figure 4. Density of Composite at the Extruder Head Zone
Microstructure analysis of composite material in Z3 confirmed the effective disper-
sion of micro carbon from rice husks in this relaxation zone. The density increase in Z3
indicated an efficient function of the spider leg. Rapid compression flow from Z1 filled up
72 before rising in Z3. Composite flow converged towards a standard exit between spider
legs, with no abnormal carbon concentrations detected (confirmed data shown in Figure
4). SEM imaging at 100x Magnification revealed a lot of stacked layers of carbon-rich ma-

trix.

3.2 Microstructure of rheological and elements
At 500x Magnification, numerous voids were observed in the microstructure, com-
monly encountered in composite manufacturing, indicating compounding challenges [6].

High-contrast areas, representing grain boundaries, show high carbon concentration at



Recent in Engineering Science and Technology 2024, Vol. 02 No. 04 | https://doi.org/10.59511/riestech.v2i04.77 26 of 33

interphase areas. Despite filler particles being micro-scale, significant energy is required
for polymer-composite interaction. Composite formation disrupts the aggregation of mi-
cro-scale carbon particles via adsorption, but nano-scale carbon particles aggregate

quickly, leading to void formation.
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Figure 5. Microstructure at Z3 Chamber, Fluid Pattern Structure
a) at 100x; b) at 500xMagnification

The carbon-rich areas are uniformly dispersed, as observed in SEM images in Figure
5a. This condition does not become apparent in experiments utilizing the hot compaction
technique. There are no discernible carbon-rich layers, as depicted in Figure 6. The carbon-
rich layers show random circular boundaries without directional flow patterns; notable
differences in these layers are evident in samples made via hot compaction methods. The
initial composition before the molding process had been manually controlled using the
same compounding method. There are conjectures of possible alterations in the carbon
composition during the molding process by extrusion and hot compaction.
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Figure 6. Micro Structure of flow resistance of composite

Elemental testing with the SEM EDX method did not generally reveal significant dif-
ferences in carbon elements. Table 1 depicts the percentage data of the main elements in
the composite, its values resembling each other. Otherwise, it can still be deduced that
both composite samples' compositions remained unchanged during molding. Analyzing
the SEM EDX data alongside SEM microstructure observations suggests that there is a
decrease in the proportion of carbon-rich layers within the composite samples extruded
using the extrusion machine. The carbon that forms the polymer chain in LLDPE has the

highest composition [18] because polymers are essentially composed of hydrocarbons.
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SEM EDX selective observation reveals silica elements acting as impurities within the mi-
crocarbon in the microstructure observation area, as shown in Table 2 [19]. An analysis of
micro carbon alteration composition can be carried out using two composite molding
methods. In Figure 7a, a sample point is shown at the grain boundary area of microcarbon
particles from rice husks, and in Figure 7b, a sample point is displayed on silica particles.

Table 1. Main Elements in Spectrum 1

% wt
Element . .
Extrusion Compaction
C 87,25 82,23
(¢} 7,44 12,74
Si 4,63 3,5

Table 2. Main Elements in Spectrum 2

% wt
Element
Spectrum 1 Spectrum 2
C 52,06 8,37
(¢} 17,61 51,03
Si 14,08 40,60

Referring to these two sets of imaging data, it can be inferred that the dispersion of
rice husk microcarbon is entirely satisfactory within the observation area. Note that sam-
ples in Figure 7 are extruded using extruder head tools. Figure 8 compares observations
of composite samples molded via hot compaction and extrusion methods. The interphase
area of the extruded composite sample is significantly reduced.

Figure 8 also shows the features suspected to be plastic flow resistance of the LLDPE
matrix during the molding process, as shown in Figure 8 (a). Likewise, Figure 8 (b) shows
crack features, indicating the suspected occurrence of rheological flow resistance from

LLDPE plastics by accompanying carbon particles.

200um Electron Image 1 200pm Electron Image 1
Figure 7. Micro Structure of Micro Carbon Particle Derived from Rice Husk at 250x Magnification

observed from a) Particle Spectrum 1 and b) Particle Spectrum 2 Sampling
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Figure 8. Micro Structure Observed at 250x Magnification from Composite Sample Molded using
a) Hot Compaction b) Extrusion Method

Voids are frequently observed at the grain boundaries of large-sized microcarbon
particles, while the carbon-rich interphase area is not notably significant for extruded
samples. These interphase constituents significantly enhance composites' electrical con-
ductivity [6].

Data analysis from microstructure observations and SEM EDX suggests that the com-
posite sample achieves optimal dispersion of microcarbon. However, the micro carbon
content is lower than that of the hot compaction composite sample. The extruded compo-
site sample is less conductive than the hot compaction composite sample to be confirmed.

This article discusses observations of composite samples from different extruder
head zones. Electrical conductivity decreased in samples after extrusion to the relaxation
zone, Z3, the observations were limited to this zone. SEM EDX observations revealed dif-
ferences in micro carbon dispersion and void presence between extrusion-printed and hot
compaction samples. As seen in the SEM EDX observations, Figure 9 illustrates the micro-
structure observed at a 100x magnification using the Backscattered Electron/BSE method.
Voids in extrusion-printed samples are observed parallel to grain boundaries, indicating
potential differences in fluid layer characteristics due to compression energy during ex-
trusion.

Cracks in the form of longitudinal grooves are thought to be a form of flow resistance
from a mixture of carbon particles and LLDPE. Cavities or porous cavities indicate the
presence of air trapped in the composite during the printing process, as shown in Figure
9 (a). Figure 9 (b) shows the direction of plastic flow in the molding process, and the cracks
show the rheological resistance of the flow of the carbon-LLDPE particle mixture. Figure
10, conducted at 2000x Magnification, provides a more detailed examination of the voids.

A particle agglomeration under 2um found in Figure 10.
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Figure 9. Micro Structure in zona 3 of extruder head chamber
a) Hot Compaction b) Extrusion Process
In the interphase area, silica impurity particles are also visible, indicating the pres-
ence of small-sized silica particles within the composite, although carbon particles are
generally more dominant. Large voids around these agglomerations support the hypoth-
esis that the dimensions of the particles influence the interaction between filler particles
and the polymer [7]. The percolation threshold excludes the influence of the carbon struc-
ture as filler in conductive composites [20]. Its crystal structure closely resembles micro-
sized carbon [20]. The particle size of microcarbon can impact its dispersion within the

composite, with finer filler materials resulting in enhanced dispersion [7].

3. 4 Extruder Head Elaboration
Before conducting an experimental composite extrusion process, a simulation model
was developed using SW software to analyze the behavior of pure virgin LLDPE. The

simulation hinged on the use of recorded data in Table 3, related to the energy generated

by screw rotation, with the primary goal to deduce the volumetric flow rate of the com-
posite material [10]. The simulation aimed to approach pressure and temperature behav-
ior during the extrusion of LLDPE material. Thus, insights into LLDPE's response under
extrusion conditions are graphically illustrated, utilizing collected experimental data

shown in Figure 11.

A ;,'3,%‘5 The mifture

Sz

5 NGY -
- powde
The mixture _f Plastic .:
powder Plastic
r

¥
e
3

" s
Void porous

- g
. » Void porous _\
- A L . Y
Void porous, ‘ Plastic Void porolis

powder

.
’)& Y The mixmreJ
v . ' .
B p Q3

SU3500 20.0kV x2.00k BSE-COMP i

Figure 10. Microstructure of Agglomeration Point



Recent in Engineering Science and Technology 2024, Vol. 02 No. 04 | https://doi.org/10.59511/riestech.v2i04.77 30 of 33

Figure 11. Profile of a) Pressure and b) Temperature of Virgin LLDPE Material Extrusion

A non-Newtonian model for LLDPE was generated using SW software. It has con-
stant density and no pressure loss during extrusion, behaving as an incompressible fluid.
Contrary to the experiment, a composite material containing 50% microcarbon from rice
husk depicted a material burst at the nozzle's tip.

The designated extruder head shown in Figure 11 indicated a non-Newtonian fluid
of LLDPE material. Real-time pressure measurements during the extrusion process were
not feasible to compare with the pressure profiles generated by the simulation at the time.
Consequently, exclusive reliance was placed on the simulation results depicted in Figure
11b to estimate the necessary temperature adjustments at the extruder head for maintain-
ing a consistent density throughout the extrusion process as a reference.

Temperature adjustments were manually set up to achieve optimal natural tempera-
ture at the nozzle tip (110°C), aiming for consistent density without relying on a cooling
machine. This kept the nozzle tip cooler than the Z1 extruder head. These settings would
benefit the gradual pressure of Figure 11. SEM EDX observations revealed the presence of
fluid layering, indicating the occurrence of a laminar flow in the molten composite, as

shown in Figure 12.

3. 5 Electrical Resistance

The measurement of the extruded composite samples revealed an average electrical
resistance in the affected zones, as illustrated in Figure 13. The TCP method addressed the
challenging geometric shape, which is difficult to prepare according to the standard Four
Point Probe (FPP) sample measurement. A significant deviation in data was observed
within zone Z1, indicating a variation in carbon concentration within the composite sam-
ples prepared from this chamber.

It is suspected that in chamber Z1, there is still turbulent flow coming from the barrel
due to the insignificant difference in the cross-sectional area [9]. This condition persists in

zone Z2, which represents the initial relaxation phase of the extrusion process, indicated

in Figure 11.
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Table 3. Measured Data of Screw and Barrel

Parameter of Screw and Barrel: Symbol
Screw Diameter D
Pitch t
Actual Channel Depth hy
Channel Depth (0.2 * D) h
Number of Channel m
Ridge Width e
Screw Length L
Actual Fillet Clearance [
Fillet Clearance (0.002 * D) )
Helix Angle (0]
Cosine & Cosd
Square Cosine ¢ Cos* &
Nozzle Diameter d
Nozzle Length Lz
Barrel Temperature Te
Barrel Diameter (Inner) Ds

Value
26,3
30
5
5,26
1
3,16
450
0,15
0,0532
19,95
0,4549
0,2069
20
10
160
26,6

Unit
mm
mm
mm
mm

The electrical resistance was higher in these zones than in the other zones. The de-

crease in electrical resistance was particularly noticeable in zone Z3, a chamber equipped

with a spider-leg channel designed to induce the transition from turbulent to laminar

flow. Figure 12 shows layer stacking from compounding processes consisting of voids at

layer intersections. A stable composite density and low electrical resistance were

achieved, indicating success for the extruder head prototype [7]. A thorough analysis of

the microstructure across the zone can provide insights into microcarbon particle disper-

sion and layer distribution during extrusions. These observations can validate conductiv-

ity enhancement by electrical resistance reduction. The spider leg successfully facilitated

the extrusion of high-loading microcarbon composites, reaching up to 50% loading.

SU3500 2

Figure 12. Laminar Pattern of Fluid Layering in Z3
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4. Conclusion

A fifty-fifty loading ratio of LLDPE polymer and micro carbon particles derived from
rice husk composites were stabilized using auxiliary tools designated for a single screw
extrusion machine. It was determined that an extrusion temperature of 110°C at the ex-
truder head was optimal for the composite material, resulting in a stabilized density of
approximately 1 g/cm?. Electrical conductivity measurements were performed using the
Two Contact Probe method, demonstrating a notable increase in conductivity within the
relaxation zone featuring a spider-leg structure. A significant reduction in resistivity was
observed within the relaxation zone (Z3), which was consistently maintained at the order
of 10° ohms within the compression zone (Z4). However, voids were detected in the com-
posite through microstructure observation, which was noted at the laminar pattern of the
composite layer. The extruded composite sample exhibits a reduction in interphase areas
enriched with smaller carbon particles compared to the hot compacted composites. These
findings underscore the successful development of a CPC material with improved electri-
cal conductivity, making it a highly suitable tool for high carbon-loading composite ma-

terial.
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